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1 Introduction
1.1 Background about graph contrastive learning (GCL)

Fig. Overview of Deep Graph Infomax (DGI)[1]

[1] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R Devon Hjelm,  “Deep Graph Infomax”, ICLR 2019
[2] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, Yang Shen, “Graph Contrastive Learning with Augmentations”, NeurlPS 2020 

Graph perturbation:
• Node dropping drops nodes and related edges to 

augment the graph, the underlying prior is that 
vertex missing does not alter semantics.

• Edge perturbation drops or adds some edges in 
the graph, the underlying prior is that semantic 
robustness against connectivity variations.

• Attribute masking discards partial attributes, the 
underlying prior is that semantic robustness 
against losing partial attributes per node.

Tab. Summary of graph augmentation methods.[2]



1 Introduction
1.2 Limitations and chanllenges in current research works

Fig. False negative samplesare more likely occurs when similarity is high.[1]

Fig. An attempt to reduce the impact brought by false negative samples.[2]

[1] Jun Xia, Lirong Wu, Jintao Chen, Ge Wang, Stan Z. Li, Qiang Liu, Shu Wu, Liang Wang, “Debiased Graph Contrastive Learning”, arXiv 2021
[2] Han Zhao, Xu Yang, Zhenru Wang, Erkun Yang, Cheng Deng, “Graph Debiased Contrastive Learning with Joint Representation Clustering”, IJCAI 2021

 Random factors also affect GCL performance:
• Graph augmentations introduce noise into the data.

 False negative samples affect GCL performance:
• False negative samples are more likely occur when 

the negative samples are very similar to the target.
• Some current research works try to relieve the 

impact brought by false negative samples.

 Complex protocols increase complexity:
• Current post-processing methods reduce the 

probabilities by sophisticated desgins after 
contrasting sample generation.



2 Methodology
2.1 Counterfactual mechanism

 True hard negative samples:
• High-quality negative samples 

help contrastive learning 
model capture critical 
information.

• However, most sampled hard 
negative instances are false.

 Counterfactual mechansim:
• Minimum changes to ensure 

the ‘hard’.
• Different outcomes to ensure 

the ‘negative’.Fig. A toy example for understanding the rationale of the counterfactual mechansim.



2 Methodology
2.2 The overview of the proposed method

Fig. The overview of CGC. We first conduct counterfactual hard negative sample 
generation to acquire a proximity-perturbed and feature-masked sample. Then, the 
target and the two generated hard negative samples will be fed into the graph 
contrastive learning module to learn graph embeddings

 Adaptive graph augmentations:
• Proximity perturbation - deleting and 

adding edges in the graph.
• Feature masking - masking a portion of 

values of the graph feature matrix.

 Counterfactual palys the role:
• to make the predictor to give a different 

result for the augmented graph.
• to ensure the perturbations on the 

graph is minimum.

 Graph contrastive learning:
• The augmented graphs will be coupled 

with the target graph.



3 Experiments
Dataset Statistics

Comparison experiments

Dataset Num. of Graphs Avg. Num. of  
Nodes

Avg. Num. of  
Edges

Node Attr. (Dim.) Classes

ENZYMES 600 32.63 62.14 18 6

PROTEINS_full 1,113 39.06 72.82 29 2

Synthie 400 95.00 172.93 15 4

FRANKENSTEIN 4,337 16.90 17.88 780 2



Thanks for your listening!


